Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
2.
J Am Heart Assoc ; 13(2): e030936, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38214247

RESUMO

BACKGROUND: Mechanical thrombectomy is an effective treatment method for large-vessel occlusion stroke (LVOS); however, it has limited efficacy for intracranial atherosclerotic disease (ICAD)-related LVOS. We investigated the use of cerebral blood volume (CBV) maps for identifying ICAD as the underlying cause of LVOS before the initiation of endovascular treatment (EVT). METHODS AND RESULTS: We reviewed clinical and imaging data from patients who presented with LVOS and underwent endovascular treatment between January 2011 and May 2021. The CBV patterns were analyzed to identify an increase in CBV within the hypoperfused area and estimate infarct patterns within the area of decreased CBV. Comparisons were made between the patients with an increase in CBV and those without, and among the estimated infarct patterns: territorial, cortical wedge, basal ganglia-only, subcortical, and normal CBV. Overall, 243 patients were included. CBV increase in the hypoperfused area was observed in 23.5% of patients. A significantly higher proportion of ICAD was observed in those with increased CBV than in those without (56.4% versus 19.8%; P<0.001). Regarding the estimated infarct patterns on the CBV, ICAD was most frequently observed in the normal CBV group (territorial, 14.9%; cortical wedge, 10.0%; basal ganglia-only, 43.8%; subcortical, 35.7%; normal, 61.7%). CBV parameters, including "an increase in CBV," "normal CBV infarct pattern," and "an increase in CBV or normal CBV infarct pattern composite," were independently associated with ICAD. CONCLUSIONS: An increased CBV or normal CBV pattern may be associated with ICAD LVOS on the pretreatment perfusion imaging.


Assuntos
Isquemia Encefálica , Arteriosclerose Intracraniana , Acidente Vascular Cerebral , Humanos , Volume Sanguíneo Cerebral , Infarto , Arteriosclerose Intracraniana/complicações , Arteriosclerose Intracraniana/diagnóstico por imagem , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Resultado do Tratamento
3.
Tomography ; 10(1): 181-192, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38250960

RESUMO

Perfusion measures of the total vasculature are commonly derived with gradient-echo (GE) dynamic susceptibility contrast (DSC) MR images, which are acquired during the early passes of a contrast agent. Alternatively, spin-echo (SE) DSC can be used to achieve specific sensitivity to the capillary signal. For an improved contrast-to-noise ratio, ultra-high-field MRI makes this technique more appealing to study cerebral microvascular physiology. Therefore, this study assessed the applicability of SE-DSC MRI at 7 T. Forty-one elderly adults underwent 7 T MRI using a multi-slice SE-EPI DSC sequence. The cerebral blood volume (CBV) and cerebral blood flow (CBF) were determined in the cortical grey matter (CGM) and white matter (WM) and compared to values from the literature. The relation of CBV and CBF with age and sex was investigated. Higher CBV and CBF values were found in CGM compared to WM, whereby the CGM-to-WM ratios depended on the amount of largest vessels excluded from the analysis. CBF was negatively associated with age in the CGM, while no significant association was found with CBV. Both CBV and CBF were higher in women compared to men in both CGM and WM. The current study verifies the possibility of quantifying cerebral microvascular perfusion with SE-DSC MRI at 7 T.


Assuntos
Volume Sanguíneo Cerebral , Substância Branca , Adulto , Idoso , Masculino , Feminino , Humanos , Perfusão , Imageamento por Ressonância Magnética
4.
Neuroradiol J ; 37(1): 107-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931176

RESUMO

BACKGROUND AND OBJECTIVE: 200 kHz tumor treating fields (TTFields) is clinically approved for newly-diagnosed glioblastoma (nGBM). Because its effects on conventional surveillance MRI brain scans are equivocal, we investigated its effects on perfusion MRI (pMRI) brain scans. METHODS: Each patient underwent institutional standard pMRI: dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) pMRI at three time points: baseline, 2-, and 6-months on-adjuvant therapy. At each timepoint, the difference between T1 pre- versus post-contrast tumor volume (ΔT1) and these pMRI metrics were evaluated: normalized and standardized relative cerebral blood volume (nRCBV, sRCBV); fractional plasma volume (Vp), volume of extravascular extracellular space (EES) per volume of tissue (Ve), blood-brain barrier (BBB) permeability (Ktrans), and time constant for gadolinium reflux from EES back into the vascular system (Kep). Between-group comparisons were performed using rank-sum analysis, and bootstrapping evaluated likely reproducibility of the results. RESULTS: Among 13 pMRI datasets (11 nGBM, 2 recurrent GBM), therapies included temozolomide-only (n = 9) and temozolomide + TTFields (n = 4). No significant differences were found in patient or tumor characteristics. Compared to temozolomide-only, temozolomide + TTFields did not significantly affect the percent-change in pMRI metrics from baseline to 2 months. But during the 2- to 6-month period, temozolomide + TTFields significantly increased the percent-change in nRCBV (+26.9% [interquartile range 55.1%] vs -39.1% [37.0%], p = 0.049), sRCBV (+9.5% [39.7%] vs -30.5% [39.4%], p = 0.049), Ktrans (+54.6% [1768.4%] vs -26.9% [61.2%], p = 0.024), Ve (+111.0% [518.1%] vs -13.0% [22.5%], p = 0.048), and Vp (+98.8% [2172.4%] vs -24.6% [53.3%], p = 0.024) compared to temozolomide-only. CONCLUSION: Using pMRI, we provide initial in-human validation of pre-clinical studies regarding the effects of TTFields on tumor blood volume and BBB permeability in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Volume Sanguíneo Cerebral , Reprodutibilidade dos Testes , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
5.
Neuroimage ; 285: 120492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070840

RESUMO

BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.


Assuntos
Dióxido de Carbono , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Volume Sanguíneo Cerebral , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Oxigênio
6.
J Cereb Blood Flow Metab ; 44(3): 333-344, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38126356

RESUMO

Tomographic perfusion imaging techniques are integral to translational stroke research paradigms that advance our understanding of the disease. Functional ultrasound (fUS) is an emerging technique that informs on cerebral blood volume (CBV) through ultrasensitive Doppler and flow velocity (CBFv) through ultrafast localization microscopy. It is not known how experimental results compare with a classical CBV-probing technique such as dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI). To that end, we assessed hemodynamics based on uUS (n = 6) or DSC-MRI (n = 7) before, during and up to three hours after 90-minute filament-induced middle cerebral artery occlusion (MCAO) in rats. Recanalization was followed by a brief hyperperfusion response, after which CBV and CBFv temporarily normalized but progressively declined after one hour in the lesion territory. DSC-MRI data corroborated the incomplete restoration of CBV after recanalization, which may have been caused by the free-breathing anesthetic regimen. During occlusion, MCAO-induced hypoperfusion was more discrepant between either technique, likely attributable to artefactual signal mechanisms related to slow flow, and processing algorithms employed for either technique. In vivo uUS- and DSC-MRI-derived measures of CBV enable serial whole-brain assessment of post-stroke hemodynamics, but readouts from both techniques need to be interpreted cautiously in situations of very low blood flow.


Assuntos
Volume Sanguíneo Cerebral , Acidente Vascular Cerebral , Ratos , Animais , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Meios de Contraste
7.
Magn Reson Med ; 91(5): 1893-1907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115573

RESUMO

PURPOSE: The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain. METHODS: Three sets of experiments were performed in three separate cohorts. (1) 3D iVASO MRI protocols were compared to single-slice iVASO, and the reproducibility of whole-brain 3D iVASO MRI was evaluated. (2) The effects from different vascular crushers in iVASO were assessed. (3) 3D iVASO MRI results were evaluated in arterial and venous blood vessels identified using ultrasmall-superparamagnetic-iron-oxides-enhanced MRI to validate its arterial origin. RESULTS: 3D iVASO scans showed signal-to-noise ratio (SNR) and CBVa measures consistent with single-slice iVASO with reasonable intrasubject reproducibility. Among the iVASO scans performed with different vascular crushers, the whole-brain 3D iVASO scan with a motion-sensitized-driven-equilibrium preparation with two binomial refocusing pulses and an effective TE of 50 ms showed the best suppression of macrovascular signals, with a relatively low specific absorption rate. When no vascular crusher was applied, the CBVa maps from 3D iVASO scans showed large CBVa values in arterial vessels but well-suppressed signals in venous vessels. CONCLUSION: A whole-brain 3D iVASO MRI scan was optimized for CBVa measurement in the human brain. When only microvascular signals are desired, a motion-sensitized-driven-equilibrium-based vascular crusher with binomial refocusing pulses can be applied in 3D iVASO.


Assuntos
Volume Sanguíneo Cerebral , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Artérias
8.
J Clin Neurosci ; 117: 120-124, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801876

RESUMO

Long-term prognosis and factors influencing endovascular therapy (EVT) remain unclear. This study aimed to investigate the association between computed tomography perfusion (CTP) parameters and long-term prognosis of patients with acute ischemic stroke (AIS) treated with EVT. Patients with AIS due to large vessel occlusion treated with EVT were prospectively included for a 1-year follow-up. All patients and their data were grouped based on the hypoperfusion intensity ratio (HIR, <0.3 vs. ≥ 0.3) and cerebral blood volume (CBV) index (>0.7 vs. ≤ 0.7). The primary outcome was favorable prognosis, defined as a modified Rankin Scale (mRS) score of 0-2. Multivariate logistic regression was used to analyze factors influencing long-term favorable prognosis. Of 69 patients included, 35 (50.7 %) achieved mRS 0-2 at one year. A favorable prognosis was observed predominantly in patients with higher CBV index (75.0 % vs. 34.1 %, p= 0.001) and lower HIR (72.0 % vs. 38.6 %, p=0.008). In the multivariate logistic regression, CBV index (odds ratio (OR) = 4.362; 95 % confidence interval (CI): 1.052, 18.082; p = 0.042), baseline National Institutes of Health Stroke Scale (NIHSS) score (OR = 0.913; 95 % CI: 0.836, 0.997; p = 0.044), and symptomatic intracranial hemorrhage (sICH) (OR = 0.089; 95 % CI: 0.009, 0.925; p = 0.043) were independently associated with a long-term favorable prognosis. The CBV index may serve as a predictor of the long-term prognosis of patients treated with EVT. The novel finding is that the baseline NIHSS score and sICH were associated with long-term prognosis.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/etiologia , AVC Isquêmico/etiologia , Volume Sanguíneo Cerebral , Resultado do Tratamento , Procedimentos Endovasculares/métodos , Prognóstico , Trombectomia/métodos , Hemorragias Intracranianas/etiologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Isquemia Encefálica/etiologia , Estudos Retrospectivos
9.
Radiology ; 308(2): e222471, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581504

RESUMO

Background Cerebral blood volume (CBV) maps derived from dynamic susceptibility contrast-enhanced (DSC) MRI are useful but not commonly available in clinical scenarios. Purpose To test image-to-image translation techniques for generating CBV maps from standard MRI sequences of brain tumors using the bookend technique DSC MRI as ground-truth references. Materials and Methods A total of 756 MRI examinations, including quantitative CBV maps produced from bookend DSC MRI, were included in this retrospective study. Two algorithms, the feature-consistency generative adversarial network (GAN) and three-dimensional encoder-decoder network with only mean absolute error loss, were trained to synthesize CBV maps. The performance of the two algorithms was evaluated quantitatively using the structural similarity index (SSIM) and qualitatively by two neuroradiologists using a four-point Likert scale. The clinical value of combining synthetic CBV maps and standard MRI scans of brain tumors was assessed in several clinical scenarios (tumor grading, prognosis prediction, differential diagnosis) using multicenter data sets (four external and one internal). Differences in diagnostic and predictive accuracy were tested using the z test. Results The three-dimensional encoder-decoder network with T1-weighted images, contrast-enhanced T1-weighted images, and apparent diffusion coefficient maps as the input achieved the highest synthetic performance (SSIM, 86.29% ± 4.30). The mean qualitative score of the synthesized CBV maps by neuroradiologists was 2.63. Combining synthetic CBV with standard MRI improved the accuracy of grading gliomas (standard MRI scans area under the receiver operating characteristic curve [AUC], 0.707; standard MRI scans with CBV maps AUC, 0.857; z = 15.17; P < .001), prediction of prognosis in gliomas (standard MRI scans AUC, 0.654; standard MRI scans with CBV maps AUC, 0.793; z = 9.62; P < .001), and differential diagnosis between tumor recurrence and treatment response in gliomas (standard MRI scans AUC, 0.778; standard MRI scans with CBV maps AUC, 0.853; z = 4.86; P < .001) and brain metastases (standard MRI scans AUC, 0.749; standard MRI scans with CBV maps AUC, 0.857; z = 6.13; P < .001). Conclusion GAN image-to-image translation techniques produced accurate synthetic CBV maps from standard MRI scans, which could be used for improving the clinical evaluation of brain tumors. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Branstetter in this issue.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Volume Sanguíneo Cerebral , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/patologia
10.
Neuroradiol J ; 36(6): 728-735, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548164

RESUMO

BACKGROUND: Perfusion imaging is one of the methods used to grade glial neoplasms, and in this study we evaluated the role of ASL perfusion in grading brain glioma. PURPOSE: The aim is to evaluate the role of arterialized cerebral blood volume (aCBV) of multi-delay ASL perfusion for grading glial neoplasm. MATERIALS AND METHODS: This study is a prospective observational study of 56 patients with glial neoplasms of the brain who underwent surgery, and only cases with positive diagnosis of glioma are included to evaluate the novel diagnostic parameter. RESULTS: In the study, ASL-derived normalized aCBV (naCBV) and T2*DSC-derived normalized CBV (nCBV) are showing very high correlation (Pearson's correlation coefficient value of 0.94) in grading glial neoplasms. naCBV and nCBF are also showing very high correlation (Pearson's correlation coefficient value of 0.876). The study also provides cutoff values for differentiating LGG from HGG for normalized aCBV(naCBV) of ASL, normalized CBV (nCBV), and normalized nCBF derived from T2* DCS as 1.12, 1.254, and 1.31, respectively. ASL-derived aCBV also shows better diagnostic accuracy than ASL-derived CBF. CONCLUSION: This study is one of its kind to the best of our knowledge where multi-delay ASL perfusion-derived aCBV is used as a novel imaging biomarker for grading glial neoplasms, and it has shown high statistical correlation with T2* DSC-derived perfusion parameters.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Volume Sanguíneo Cerebral , Glioma/diagnóstico por imagem , Marcadores de Spin , Circulação Cerebrovascular , Biomarcadores , Meios de Contraste , Gradação de Tumores
11.
IEEE Trans Med Imaging ; 42(8): 2223-2234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37027649

RESUMO

Longitudinal assessment of brain perfusion is a critical parameter for neurodevelopmental outcome of neonates undergoing cardiopulmonary bypass procedure. In this study, we aim to measure the variations of cerebral blood volume (CBV) in human neonates during cardiac surgery, using Ultrafast Power Doppler and freehand scanning. To be clinically relevant, this method must satisfy three criteria: being able to image a wide field of view in the brain, show significant longitudinal CBV variations, and present reproducible results. To address the first point, we performed for the first time transfontanellar Ultrafast Power Doppler using a hand-held phased-array transducer with diverging waves. This increased the field of view more than threefold compared to previous studies using linear transducers and plane waves. We were able to image vessels in the cortical areas as well as the deep grey matter and temporal lobes. Second, we measured the longitudinal variations of CBV on human neonates undergoing cardiopulmonary bypass. When compared to a pre-operative baseline acquisition, the CBV exhibited significant variation during bypass: on average, + 20±3 % in the mid-sagittal full sector ( [Formula: see text]), - 11±3 % in the cortical regions ( [Formula: see text]) and - 10±4 % in the basal ganglia ( [Formula: see text]). Third, a trained operator performing identical scans was able to reproduce CBV estimates with a variability of 4% to 7.5% depending on the regions considered. We also investigated whether vessel segmentation could further improve reproducibility, but found that it actually introduced greater variability in the results. Overall, this study demonstrates the clinical translation of ultrafast power Doppler with diverging-waves and freehand scanning.


Assuntos
Volume Sanguíneo Cerebral , Ultrassonografia Doppler , Recém-Nascido , Humanos , Reprodutibilidade dos Testes , Ultrassonografia Doppler/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular
12.
Eur J Pediatr ; 182(6): 2821-2832, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37041295

RESUMO

Unstable cerebral blood flow is theorised to contribute to the occurrence of intraventricular haemorrhage (IVH) in extremely low-birth-weight infants (ELBWIs), which can be caused by increased arterial flow, increased venous pressure, and impaired autoregulation of brain vasculature. As a preliminary step to investigate such instability, we aimed to check for correlations of cerebral blood volume (CBV), as measured using near-infrared spectroscopy, with the flow velocities of the anterior cerebral artery (ACA) and internal cerebral vein (ICV), as measured using Doppler ultrasonography. Data were retrospectively analysed from 30 ELBWIs uncomplicated by symptomatic patent ductus arteriosus, which can influence ACA velocity, and severe IVH (grade ≥ 3), which can influence ICV velocity and CBV. The correlation between tissue oxygen saturation (StO2) and mean blood pressure was also analysed as an index of autoregulation. CBV was not associated with ACA velocity; however, it was significantly correlated with ICV velocity (Pearson R = 0.59 [95% confidence interval: 0.29-0.78], P = 0.00061). No correlation between StO2 and mean blood pressure was observed, implying that autoregulation was not impaired.    Conclusion: Although our findings are based on the premise that cerebral autoregulation was unimpaired in the ELBWIs without complications, the same result cannot be directly applied to severe IVH cases. However, our results may aid future research on IVH prediction by investigating the changes in CBV when severe IVH occurs during ICV velocity fluctuation. What is Known: • The pathogenesis of IVH includes unstable cerebral blood flow affected by increased arterial flow, increased venous pressure, and impaired cerebral autoregulation. • The approaches that can predict IVH are under discussion. What is New: • ACA velocity is not associated with CBV, but ICV velocity is significantly correlated with CBV. • CBV measured using NIRS may be useful in future research on IVH prediction.


Assuntos
Volume Sanguíneo Cerebral , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Recém-Nascido , Humanos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/etiologia , Velocidade do Fluxo Sanguíneo/fisiologia
13.
Cell Rep ; 42(4): 112369, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043356

RESUMO

To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques. We show that SUA provides a significant estimate of the neurovascular response below the typical fMRI spatial resolution of 2mm3. Furthermore, our results also show that SUAs and CBV activities are statistically uncorrelated during the resting state but correlate during tasks. These results have important implications for interpreting functional imaging findings while one constructs inferences of SUA during resting state or tasks.


Assuntos
Volume Sanguíneo Cerebral , Circulação Cerebrovascular , Animais , Circulação Cerebrovascular/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Primatas , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Cognição
14.
PLoS One ; 18(2): e0280855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758009

RESUMO

The development of ultra high field fMRI signal readout strategies and contrasts has led to the possibility of imaging the human brain in vivo and non-invasively at increasingly higher spatial resolutions of cortical layers and columns. One emergent layer-fMRI acquisition method with increasing popularity is the cerebral blood volume sensitive sequence named vascular space occupancy (VASO). This approach has been shown to be mostly sensitive to locally-specific changes of laminar microvasculature, without unwanted biases of trans-laminar draining veins. Until now, however, VASO has not been applied in the technically challenging cortical area of the auditory cortex. Here, we describe the main challenges we encountered when developing a VASO protocol for auditory neuroscientific applications and the solutions we have adopted. With the resulting protocol, we present preliminary results of laminar responses to sounds and as a proof of concept for future investigations, we map the topographic representation of frequency preference (tonotopy) in the auditory cortex.


Assuntos
Córtex Auditivo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Volume Sanguíneo Cerebral/fisiologia , Córtex Auditivo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Córtex Cerebral/fisiologia
15.
Tomography ; 9(1): 342-351, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828379

RESUMO

BACKGROUND: The aim of the study is to identify the advantages, if any, of post-operative MRIs performed at 48 h compared to MRIs performed after 48 h in glioblastoma surgery. MATERIALS AND METHODS: To assess the presence of a residual tumor, the T1-weighted Contrast Enhancement (CE), Apparent Diffusion Coefficient (ADC), and Cerebral Blood Volume (rCBV) in the proximity of the surgical cavity were considered. The rCBV ratio was calculated by comparing the rCBV with the contralateral normal white matter. After the blind image examinations by the two radiologists, the patients were divided into two groups according to time window after surgery: ≤48 h (group 1) and >48 h (group 2). RESULTS: A total of 145 patients were enrolled; at the 6-month follow-up MRI, disease recurrence was 89.9% (125/139), with a mean patient survival of 8.5 months (SD 7.8). The mean ADC and rCBV ratio values presented statistical differences between the two groups (p < 0.05). Of these 40 patients in whom an ADC value was not obtained, the rCBV values could not be calculated in 52.5% (21/40) due to artifacts (p < 0.05). CONCLUSION: The study showed differences in CE, rCBV, and ADC values between the groups of patients undergoing MRIs before and after 48 h. An MRI performed within 48 h may increase the ability of detecting GBM by the perfusion technique with the calculation of the rCBV ratio.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Volume Sanguíneo Cerebral , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos
16.
MAGMA ; 36(1): 95-106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36114897

RESUMO

Estimates of cerebral blood flow (CBF) and tissue mean transit time (MTT) have been shown to differ between dynamic CT perfusion (CTP) and dynamic susceptibility contrast MRI (DSC-MRI). This study investigates whether these discrepancies regarding CBF and MTT between CTP and DSC-MRI can be attributed to the different injection durations of these techniques. Five subjects were scanned using CTP and DSC-MRI. Region-wise estimates of CBF, MTT, and cerebral blood volume (CBV) were derived based on oscillatory index regularized singular value decomposition. A parametric model that reproduced the shape of measured time curves and characteristics of resulting perfusion parameter estimates was developed and used to simulate data with injection durations typical for CTP and DSC-MRI for a clinically relevant set of perfusion scenarios and noise levels. In simulations, estimates of CBF/MTT showed larger negative/positive bias and increasing variability for CTP when compared to DSC-MRI, especially for high CBF levels. While noise also affected estimates, at clinically relevant levels, the injection duration effect was larger. There are several methodological differences between CTP and DSC-MRI. The results of this study suggest that the injection duration is among those that can explain differences in estimates of CBF and MTT between these bolus tracking techniques.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Circulação Cerebrovascular/fisiologia , Volume Sanguíneo Cerebral , Tomografia Computadorizada por Raios X/métodos
17.
Br J Radiol ; 96(1141): 20220052, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278795

RESUMO

OBJECTIVE: This study aims to research the efficacy of MRI (I) for differentiating high-grade glioma (HGG) (P) with solitary brain metastasis (SBM) (C) by creating a combination of relative cerebral blood volume (rCBV) (O) and fractional anisotropy (FA) (O) in patients with intracerebral tumors. METHODS: Searches were conducted on September 2021 with no publication date restriction, using an electronic search for related articles published in English, from PubMed (1994 to September 2021), Scopus (1977 to September 2021), Web of Science (1985 to September 2021), and Cochrane (1997 to September 2021). A total of 1056 studies were found, with 23 used for qualitative and quantitative data synthesis. Inclusion criteria were: patients diagnosed with HGG and SBM without age, sex, or race restriction; MRI examination of rCBV and FA; reliable histopathological diagnostic method as the gold-standard for all conditions of interest; observational and clinical studies. Newcastle-Ottawa quality assessment Scale (NOS) and Cochrane risk of bias tool (ROB) for observational and clinical trial studies were managed to appraise the quality of individual studies included. Data extraction results were managed using Mendeley and Excel, pooling data synthesis was completed using the Review Manager 5.4 software with random effect model to discriminate HGG and SBM, and divided into four subgroups. RESULTS: There were 23 studies included with a total sample size of 597 HGG patients and 373 control groups/SBM. The analysis was categorized into four subgroups: (1) the subgroup with rCBV values in the central area of the tumor/intratumoral (399 HGG and 232 SBM) shows that HGG patients are not significantly different from SBM/controls group (SMD [95% CI] = -0.27 [-0.66, 0.13]), 2) the subgroup with rCBV values in the peritumoral area (452 HGG and 274 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] =  -1.23 [-1.45 to -1.01]), (3) the subgroup with FA values in the central area of the tumor (249 HGG and 156 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = - 0.44 [-0.84,-0.04]), furthermore (4) the subgroup with FA values in the peritumoral area (261 HGG and 168 SBM) shows that the HGG patients are significantly higher than the SBM (SMD [95% CI] = -0.59 [-1.02,-0.16]). CONCLUSION: Combining rCBV and FA measurements in the peritumoral region and FA in the intratumoral region increase the accuracy of MRI examination to differentiate between HGG and SBM patients effectively. Confidence in the accuracy of our results may be influenced by major interstudy heterogeneity. Whereas the I2 for the rCBV in the intratumoral subgroup was 80%, I2 for the rCBV in the peritumoral subgroup was 39%, and I2 for the FA in the intratumoral subgroup was 69%, and I2 for the FA in the peritumoral subgroup was 74%. The predefined accurate search criteria, and precise selection and evaluation of methodological quality for included studies, strengthen this studyOur study has no funder, no conflict of interest, and followed an established PROSPERO protocol (ID: CRD42021279106). ADVANCES IN KNOWLEDGE: The combination of rCBV and FA measurements' results is promising in differentiating HGG and SBM.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Volume Sanguíneo Cerebral , Anisotropia , Glioma/patologia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Testes Diagnósticos de Rotina
18.
J Neuroradiol ; 50(4): 424-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36270500

RESUMO

BACKGROUND AND PURPOSE: Intracranial atherosclerotic stenosis (ICAS)-related large vessel occlusion (LVO) is difficult to diagnose before endovascular thrombectomy (EVT) in an emergency. We hypothesized that hypoperfusion intensity ratio (HIR) and cerebral blood volume (CBV) index reflect collateral flow and would be useful parameters to predict underlying ICAS. MATERIALS AND METHODS: Clinical and perfusion imaging parameters of patients receiving EVT for LVO were reviewed retrospectively. Patients were divided into ICAS and embolism groups with angiographical findings. The association between prespecified parameters and underlying ICAS were assessed using multivariable logistic regression analyses. Discriminative ability was assessed using receiver operating characteristic analysis. RESULTS: Among 238 consecutive patients, 47 satisfied the inclusion criteria, including 10 with ICAS-related LVO. In ROC analyses, HIR showed good discrimination with a cutoff value of 0.22 (area under the curve, 0.85; 95%CI, 0.75-0.96; sensitivity, 0.84; specificity, 0.80) for underlying ICAS. CBV index showed excellent discrimination with a cutoff value of 0.90 (area under the curve, 0.92; 95%CI, 0.81-0.98; sensitivity, 0.92; specificity, 0.79). Multivariable logistic regression analysis revealed that HIR ≤ 0.22 (OR, 22.5; 95%CI, 2.9-177.0; P = 0.003) and CBV index ≥ 0.9 (OR, 75.7; 95%CI, 5.8-994.0; P < 0.001) were significantly associated with underlying ICAS. CONCLUSION: HIR ≤ 0.22 and CBV index ≥ 0.9 were associated with underlying ICAS and may predict underlying ICAS before EVT.


Assuntos
Arteriosclerose Intracraniana , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Constrição Patológica , Volume Sanguíneo Cerebral , Resultado do Tratamento , Trombectomia/métodos , Arteriosclerose Intracraniana/diagnóstico por imagem , Arteriosclerose Intracraniana/complicações , Acidente Vascular Cerebral/complicações
19.
Acad Radiol ; 30(9): 1816-1822, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36549990

RESUMO

RATIONALE AND OBJECTIVES: With the development of HER2-directed therapies, identifying non-invasive imaging biomarkers of HER2 expression in breast cancer brain metastases has become increasingly important. The purpose of this study was to investigate whether relative cerebral blood volume (rCBV) from dynamic susceptibility contrast-enhanced (DSC) perfusion MR could help identify the HER2 status of breast cancer brain metastases. MATERIALS AND METHODS: With IRB approval for this HIPAA-compliant cross-sectional study and a waiver of informed consent, we queried our institution's electronic medical record to derive a cohort of 14 histologically proven breast cancer brain metastases with preoperative DSC perfusion MR and HER2 analyses of the resected/biopsied brain specimens from 2011-2021. The rCBV of the lesions was measured and compared using Mann-Whitney tests. Receiver operating characteristic analyses were performed to evaluate the performance of rCBV in identifying HER2 status. RESULTS: The study cohort was comprised of 14 women with a mean age of 56 years (range: 32-81 years) with a total of 14 distinct lesions. The rCBV of HER2-positive breast cancer brain metastases was significantly greater than the rCBV of HER2-negative lesions (8.02 vs 3.97, U=48.00, p=0.001). rCBV differentiated HER2-positive lesions from HER2-negative lesions with an area under the curve of 0.98 (standard error=0.032, p<0.001). The accuracy-maximizing rCBV threshold (4.8) was associated with an accuracy of 93% (13/14), a sensitivity of 100% (7/7), and a specificity of 86% (6/7). CONCLUSION: rCBV may assist in identifying the HER2 status of breast cancer brain metastases, if validated in a large prospective trial.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Pessoa de Meia-Idade , Volume Sanguíneo Cerebral , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Neoplasias da Mama/diagnóstico por imagem , Estudos Transversais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Perfusão , Circulação Cerebrovascular , Meios de Contraste
20.
Eur J Radiol ; 158: 110650, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549171

RESUMO

INTRODUCTION AND PURPOSE: Flat detector computed tomography (FD-CT) technology is becoming more widely available in the angiography suites of comprehensive stroke centers. In patients with acute ischemic stroke (AIS), who are referred for endovascular therapy (EVT), FD-CT generates cerebral pooled blood volume (PBV) maps, which might help in predicting the final infarct area. We retrospectively analyzed pre- and post-recanalization therapy quantitative PBV measurements in both the infarcted and hypoperfused brain areas of AIS patients referred for EVT. MATERIALS AND METHODS: We included AIS patients with large vessel occlusion in the anterior circulation referred for EVT from primary stroke centers to our comprehensive stroke center. The pre- and post-recanalization FD-CT regional relative PBV (rPBV) values were measured between ipsilateral lesional and contralateral non-lesional areas based on final infarct area on post EVT follow-up cross-sectional imaging. Statistical analysis was performed to identify differences in PBV values between infarcted and non-infarcted, recanalized brain areas. RESULTS: We included 20 AIS patients. Mean age was 63 years (ranging from 36 to 86 years). The mean pre- EVT rPBV value was 0.57 (±0.40) for infarcted areas and 0.75 (±0.43) for hypoperfusion areas. The mean differences (Δ) between pre- and post-EVT rPBV values for infarcted and hypoperfused areas were respectively 0.69 (±0.59) and 0.69 (±0.90). We found no significant differences (p > 0.05) between pre-EVT rPBV and ΔrPBV values of infarct areas and hypoperfusion areas. CONCLUSION: Angiographic PBV mapping is useful for the detection of cerebral perfusion deficits, especially in combination with the fill run images. However, we were not able to distinguish irreversibly infarcted tissue from potentially salvageable, hypoperfused brain tissue based on quantitative PBV measurement in AIS patients.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Tomografia Computadorizada por Raios X/métodos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , Volume Sanguíneo Cerebral , Angiografia Cerebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...